Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Rationale Early life social rearing has profound consequences on offspring behavior and resilience. Yet, most studies examining early life development in rodents use species whose young are born immobile and do not produce complex social behavior until later in development. Furthermore, models of rearing under increased social complexity, rather than deprivation, are needed to provide alternative insight into the development of social neural circuitry. Objectives To understand precocial offspring social development, we manipulated early life social complexity in the communal spiny mouse Acomys cahirinus and assessed long-term consequences on offspring social behavior, exploration, and neural responses to novel social stimuli. Methods Spiny mouse pups were raised in the presence or absence of a non-kin breeding group. Upon adulthood, subjects underwent social interaction tests, an open field test, and a novel object test. Subjects were then exposed to a novel conspecific and novel group and neural responses were quantified via immunohistochemical staining in brain regions associated with social behavior. Results Early life social experience did not influence behavior in the test battery, but it did influence social processing. In animals exposed to non-kin during development, adult lateral septal neural responses toward a novel conspecific were weaker and hypothalamic neural responses toward a mixed-sex group were stronger. Conclusions Communal species may exhibit robust behavioral resilience to the early life social environment. But the early life environment can affect how novel social information is processed in the brain during adulthood, with long-term consequences that are likely to shape their behavioral trajectory.more » « less
-
The fighting fish Betta splendens, long studied for its aggressive territorial competitions, has the potential to be a tractable and relevant model for studying the intersection of cognitive ecology and social neuroscience. Yet, few studies have comprehensively assessed Betta behavior across both social and nonsocial contexts. Furthermore, the present study is the first to quantify the expression of phosphorylated ribosomal protein S6 (PS6), a proxy for neural response, in the Betta telencephalon. Here, we assessed male Betta behavior across a suite of tasks and found that response to a mirror, but not neophilia (a novel object) nor anxiety (scototaxis), predicted behavior in a social competition. To then explore the cognitive aspects of social competition, we exposed Betta to either a familiar or novel opponent and compared their competitive behavior as well as their neural responses in the teleost homologs of the hippocampus, basolateral amygdala, and lateral septum. We did not detect any differences between familiar-exposed and novel-exposed individuals, but by implementing the first use of a habituation–dishabituation competition design in a study of Betta, we were able to observe remarkable consistency in competitive outcomes across repeated exposures. Taken together, the present study lays the groundwork for expanding the use of Betta to explore integrative and multidimensional questions of social cognition.more » « less
-
Academia in the United States continues to grapple with its longstanding history of racial discrimination and its active perpetuation of racial disparities. To this end, universities and academic societies must grow in ways that reduce racial minoritization and foster racial equity. What are the effective and long-lasting approaches we as academics should prioritize to promote racial equity in our academic communities? To address this, the authors held a diversity, equity, and inclusion (DEI) panel during the Society for Behavioral Neuroendocrinology 2022 annual meeting, and in the following commentary synthesize the panelists’ recommendations for fostering racial equity in the US academic community.more » « less
-
The nonapeptide system modulates numerous social behaviors through oxytocin and vasopressin activation of the oxytocin receptor (OXTR) and vasopressin receptor (AVPR1A) in the brain. OXTRs and AVPR1As are widely distributed throughout the brain and binding densities exhibit substantial variation within and across species. Although OXTR and AVPR1A binding distributions have been mapped for several rodents, this system has yet to be characterized in the spiny mouse (Acomys cahirinus). Here we conducted receptor autoradiography and in situ hybridization to map distributions of OXTR and AVPR1A binding and Oxtr and Avpr1a mRNA expression throughout the basal forebrain and midbrain of male and female spiny mice. We found that nonapeptide receptor mRNA is diffuse throughout the forebrain and midbrain and does not always align with OXTR and AVPR1A binding. Analyses of sex differences in brain regions involved in social behavior and reward revealed that males exhibit higher OXTR binding densities in the lateral septum, bed nucleus of the stria terminalis, and anterior hypothalamus. However, no association with gonadal sex was observed for AVPR1A binding. Hierarchical clustering analysis further revealed that co-expression patterns of OXTR and AVPR1A binding across brain regions involved in social behavior and reward differ between males and females. These findings provide mapping distributions and sex differences in nonapeptide receptors in spiny mice. Spiny mice are an excellent organism for studying grouping behaviors such as cooperation and prosociality, and the nonapeptide receptor mapping here can inform the study of nonapeptide-mediated behavior in a highly social, large group-living rodent.more » « less
-
Introduction Evidence of animal personality and behavioral syndromes is widespread across animals, yet the development of these traits remains poorly understood. Previous research has shown that exposure to predators, heterospecifics, and urbanized environments can influence personality and behavioral syndromes. Yet, to date, the influence of early social experiences with conspecifics on the development of adult behavioral traits is far less known. We use swordtail fish ( Xiphophorus nigrensis ), a species with three genetically-determined male mating strategies (courtship display, coercion, or mixed strategy) to assess how different early-life social experiences shape adult behavioral development. Methods We raised female swordtails from birth to adulthood in density-controlled sexual-social treatments that varied in the presence of the type of male mating tactics (coercers only, displayers only, coercers and displayers, and mixed-strategists only). At adulthood, we tested females’ boldness, shyness, aggression, sociality, and activity. Results We found that the number of different mating strategies females were raised with (social complexity) shaped behavioral development more than any individual mating strategy. Females reared in complex environments with two male mating tactics were bolder, less shy, and less aggressive than females reared with a single male mating tactic (either courtship only or coercion only). Complex sexual-social environments produced females with behavioral syndromes (correlations between aggression and activity, shyness and aggression, and social interaction and activity), whereas simple environments did not. Discussion Importantly, the characteristics of these socially-induced behavioral syndromes differ from those driven by predation, but converge on characteristics emerging from animals found in urban environments. Our findings suggest that complexity of the sexual-social environment shapes the development of personality and behavioral syndromes to facilitate social information gathering. Furthermore, our research highlights the previously overlooked influence of sexual selection as a significant contributing factor to diverse behavioral development.more » « less
An official website of the United States government
